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Water quality control by bank placement based on
optimal control and �nite element method
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SUMMARY

This paper presents a method for quality control by bank placement based on an optimal control theory
and the �nite element method. The shallow water equation is employed for the analysis of the �ow
condition and the advection-di�usion equation is used for the analysis of pollutant concentration. The
optimal control theory is utilized to obtain a control value for the objective state value. The shear-
slip mesh update method which is suitable for the rotational problem of body is employed. To solve
the optimization problem, the time domain decomposition method is applied as a technique of storage
requirements reduction. The Sakawa–Shindo method is employed as a minimization technique. The
Crank–Nicolson method is applied to the temporal discretization. A method for optimal control of bank
placement has been presented. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: optimal control theory; �nite element method; time domain decomposition method;
Sakawa–Shindo method; shear-slip mesh update method

1. INTRODUCTION

There are many closed bays having serious water quality problem caused by e�uents from
factories and homes in Japan. To solve this type of pollution problem, the government has
planned several projects. The �rst plan is to arrange drains. The second plan is to purify
the polluted water area by utilizing the process of biodegradation. This plan is to attempt
puri�cation to create the sandy beach, sedimentation dredge and so on. These plans may not
be applicable to purify the polluted water area for short time durations. The third plan is to
promote the exchange of sea-water. This plan is for reducing the pollutant concentration by
the injection of clear water. This plan is very e�cient to purify the polluted water area for a
short time duration, but it costs much to maintain the control device.
In this research, the method for controlling the pollutant concentration by the bank is

studied. In the case of this plan, the location for construction of the bank to control the
pollutant concentration is unknown. To decide on the location of the bank the optimal control
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Figure 1. Image of this research: (a) non control; (b) optimal control.

theory is employed. In this research, to decide on the location of the bank, the optimal angle
of rotation of the bank from the initial location is employed. Thus the purpose of this research
is to con�rm the e�ect of this plan which is the construction of a bank for controlling the
pollutant concentration and to decide the optimal angle of rotation of bank for controlling
the pollutant concentration at the objective point using the optimal control theory and �nite
element method. The angle of rotation of bank is employed as the control value. The image
of this research is illustrated in Figure 1.
For resolving the rotational problem of the body, the remeshing technique is required. For

the remeshing technique, the shear-slip mesh update method is used in this paper. This method
is very e�cient for solving the rotational problem of the body.
To solve the optimization problem, especially for large scale computation, computational

storage is needed for which every solution of the state equation is required to calculate the
adjoint equation. Therefore the technique of storage saving should be introduced. To do this,
the time domain decomposition method is employed as a technique for reducing storage
requirements.
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WATER QUALITY CONTROL BY BANK PLACEMENT 321

In this research, as case studies, two numerical simulations are carried out. The �rst example
is the veri�cation of the present method using the problem of control of pollution in the
rectangular channel. The second example is the problem of control of pollution at the Onjuku
Coast located in Chiba prefecture in Japan.

2. STATE EQUATION

2.1. State equation

The shallow water equation is employed to calculate the �ow, and the advection-di�usion
equation is employed to calculate the distribution of pollutant concentration. The shallow
water equation is written as

u̇i + ujui; j + g�; i − �(ui; j + uj; i); j + fui =0 (1)

�̇+ {(h+ �)ui}; i =0 (2)

where ui denotes water velocity, � represents the water elevation, g is the gravity acceleration
and h is water depth, respectively. Kinematic eddy viscosity is expressed by �, which is
expressed as

�=
�l
6
u∗h

where �l is a Kalman constant and u∗ is the velocity of friction which is given as

u∗=
gn2u2k
h1=3

and f, the bottom of friction term, can be denoted as

f=
gn2

(h+ �)4=3
√
ukuk

where n is the Manning coe�cient of roughness. The boundary condition of the shallow water
equation is given as follows:

ui = ûi on �d (3)

�= �̂ on �d (4)

un = uini= ûn on �n (5)

The advection-di�usion equation is represented as

ċ+ uic; i − �c; ii=0 (6)
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where c is the pollutant concentration and � the di�usion coe�cient. The boundary condition
of the advection-di�usion equation is given as

c= ĉ on �d (7)

b= �c; ini= b̂ on �n (8)

where ni denotes the direction cosine of the unit outward normal of the boundary and b̂
expresses the concentration �ux on the boundary. The overhat ˆ expresses the given value on
the boundary.
The initial condition is given as

ui = ûi0 in � at t= t0 (9)

c= ĉ0 in � at t= t0 (10)

2.2. Finite element equation

Multiplying weighting function w by both sides of Equations (1), (2) and (3) and integrating
over the domain �, the weighted residual equations can be obtained as

∫
�
wu̇i d� + �uj

∫
�
wui; j d� + g

∫
�
!�; i d�

−�
(∫

�
wui; jj d� +

∫
�
wuj; ij d�

)
+ f

∫
�
wui d�=0 (11)

∫
�
w�̇ d� + �ui

∫
�
wh d� + �ui

∫
�
w�i d� + (h+ �)

∫
�
wui; i d�=0 (12)

∫
�
wċ d� + �ui

∫
�
wc; i d�− �

∫
�
wc; ii d�=0 (13)

The weighted residual equations can be transformed into
∫
�
wu̇i d� + �uj

∫
�
wui; j d� + g

∫
�
w�; i d�

+�
(∫

�
w;jui; j d� +

∫
�
w;juj; i d�

)
+ f

∫
�
wui d�= 0 (14)

∫
�
w�̇ d� + �ui

∫
�
wh d� + �ui

∫
�
w�i d� + (h+ �)

∫
�
wui; i d�= 0 (15)

∫
�
wċ d� + �ui

∫
�
wc; i d� + �

∫
�
w; ic; i d�= 0 (16)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:319–338



WATER QUALITY CONTROL BY BANK PLACEMENT 323

Interpolating the weighted residual equations using the bubble function element [1–4], the
�nite element equation can be obtained as

Mu̇i + �ujSjui + gSi�+ �(Hjjui +Hjiuj) + fMui =0 (17)

M�̇+ �uiSih+ �uiSi�+ (h+ �)Siui =0 (18)

Mċ+ �uiSic+ �Hiic=0 (19)

where the coe�cient matrices of the �nite element equation can be derived as follows:

M =
∫
�
	�	� d�; Si=

∫
�
	�	�; i d�; Sj=

∫
�
	�	�; j d�

Hii =
∫
�
	�; i	�; i d�; Hji=

∫
�
	�; j	�; i d�; Hjj=

∫
�
	�; j	�; j d�

2.3. Temporal discretization

For the temporal discretization of the �nite element equations, the Crank–Nicolson method is
applied. The �nite element equations discretized in the temporal direction can be obtained as

M
un+1i − uni

t

+ �ujSju
n+1=2
i + gSi�n+1=2 + �(Hjju

n+1=2
i +Hjiu

n+1=2
j ) + fMun+1=2i = 0 (20)

M
�n+1 − �n

t

+ �uiSihn+1=2 + �uiSi�n+1=2 + (h+ �)Siu
n+1=2
i = 0 (21)

M
cn+1i − cn

t

+ �uiSicn+1=2 + �Hiicn+1=2 = 0 (22)

where un+1=2i ; hn+1=2; �n+1=2; cn+1=2; �ui and h+ � are expressed as

un+1=2i = 1
2(u

n+1
i + uni ); hn+1=2 = 1

2(h
n+1 + hn)= h; �n+1=2 = 1

2(�
n+1 + �n)

cn+1=2 = 1
2(c

n+1 + cn); �ui = 1
2(3u

n
i − un−1i );

h+ �= 1
2(3(h+ �)

n − (h+ �)n−1)= h+ 1
2(3�

n − �n−1)

where �ui and (h+ �) are quasi-linear approximation of advection velocity, which
is given by the Adams–Bashforth formula and has second order accuracy. Therefore, in
the temporal direction, this discretization is the linear scheme which has second order
accuracy.
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3. OPTIMAL CONTROL THEORY

3.1. Performance function

The optimal control theory is employed to obtain the control value for the objective state value.
For the control value, the angle of rotation of the bank located in the shallow water �ow is
employed. The performance function expressed by the square form of pollutant concentration
is used. The performance function is expressed as

J =
1
2

∫ tf

t0

∫
�
(c − copt)TQ(c − copt) d�dt (23)

where Q is weighting constants, c is the computed pollutant concentration and copt is the
required concentration. The purpose is to �nd the optimal angle of rotation of the bank so as
to minimize the performance function, which means the computed concentration should be as
close as the optimal concentration. Here, the optimum concentration is the preassigned value,
which is considered as the optimal state of the environment.

3.2. Derivation of adjoint equation

The performance function is constrained by the state equation. The Lagrange multiplier method
is suitable for the minimization problem of the performance function with a constraint condi-
tion. Therefore the extended performance function is introduced using the Lagrange multiplier
multiplied by the state equation. As the state equation which is added to the performance
function, the discretized �nite element equations in the spatial direction are employed. The
extended performance function is expressed as

J ∗ = J +
∫ tf

t0

∫
�
u∗Ti (Mu̇i + �ujSjui + gSi�+ �(Hjjui +Hjiuj) + fMui) d�dt

+
∫ tf

t0

∫
�
�∗T(M�̇+ �uiSih+ �uiSi�+ (h+ �)Siuj) d�dt

+
∫ tf

t0

∫
�
c∗T(Mċ+ �uiSic+ �Hiic) d�dt (24)

where u∗i ; �
∗; c∗ denote Lagrange multipliers for water velocity, water elevation and pollutant

concentration, respectively. Matrices M; Si; Sj; Hii; Hji and Hjj denote the coe�cients derived
by the �nite element equations. The extended performance function is divided into two parts
which are referred to as the Hamiltonian and the time derivative term as follows:

J ∗=
∫ tf

t0

∫
�
(H − u∗Ti M u̇i − �∗TM�̇− c∗TMċ) d�dt (25)

where the Hamiltonian is expressed as

H = 1
2(c − copt)TQ(c − copt)
+ u∗Ti (− �ujSjui − gSi�− �(Hjjui +Hjiuj)− fMui)
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+ �∗T(− �uiSih− �uiSi�− (h+ �)Siui)
+ c∗T(− �uiSic − �Hiic) (26)

As a necessary condition by which J ∗ should be stationary, the �rst variation of J ∗ must
be zero. Therefore the terminal condition can be obtained as

u∗i =0; �∗=0; c∗=0 at t= tf (27)

Calculating the gradient of Hamiltonian with respect to the state variable, the adjoint equa-
tions can be obtained in the following form:

Mu̇∗i =−@H
@ui

(28)

M�̇∗ =−@H
@�

(29)

Mċ∗ =−@H
@c

(30)

3.3. Finite element discretization for adjoint equation

Di�erentiating the Hamiltonian with respect to the state variable, the adjoint �nite element
equations discretized in the space direction can be obtained as

Mu̇∗i −
[
�ujST; j u

∗
i +

1
4e{S; iuj}Tu∗j + �(HT

; jju
∗
i +H

T
; iju

∗
j ) + fM

Tu∗i

+ 1
4e{S; ih}T�∗ + 1

4e{S; i�}T�∗ + �hST; i �
∗ + ��ST; i �

∗ + 1
4e{S; ic}Tc∗

]
=0 (31)

M�̇∗ − [
gSTi u

∗
i + �uiS

T
i �

∗ + 1
4e{Siui}T�∗

]
=0 (32)

Mċ∗ − [ �uiST; i c∗ + �HT
; iic

∗] +Q(c − copt) = 0 (33)

where e means the unit vector.
For the temporal discretization of the adjoint �nite element equations, the Crank–Nicolson

method is applied. Therefore, the adjoint �nite element equations discretized in the temporal
direction can be obtained as

M
u∗ni − u∗n−1i


t
−
[
�ujST; j u

∗n−1=2
i + 1

4e{S; iuj}Tu∗n−1=2j + �(HT
; jju

∗n−1=2
i +HT

; iju
∗n−1=2
j )

+fMTu∗n−1=2i + 1
4e{S; ih}T�∗n−1=2 + 1

4e{S; i�}T�∗n−1=2 + �hST; i �
∗n−1=2 + ��ST; i �

∗n−1=2

× 1
4e{S; ic}Tc∗n−1=2

]
=0 (34)
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M
�∗n − �∗n−1


t
−
[
gSTi u

∗n−1=2
i + �uiSTi �

∗n−1=2 + 1
4e{Siui}T�∗n−1=2

]
=0 (35)

M
c∗n − c∗n−1


t
− [ �uiST; i c∗n−1=2 + �HT

; iic
∗n−1=2] +Q(c − copt) = 0 (36)

where u∗n−1=2i ; �∗n−1=2 and c∗n−1=2 are expressed by

u∗n−1=2i = 1
2(u

∗n
i + u

∗n−1
i ); �∗n−1=2 = 1

2(�
∗n + �∗n−1); c∗n−1=2 = 1

2(c
∗n + c∗n−1)

4. TIME DOMAIN DECOMPOSITION METHOD

In principle, the solutions of the state equation at all discretization points in space and in time
are required in order to solve the adjoint equation. For large scale optimization problem, lot
of computational storage space is required and it is almost impossible to store the solution of
the state equation at every time discretization point. Thus, the method, which can drastically
reduce the storage requirements is described below. The time domain decomposition method
is employed as a technique for reducing storage requirements [5; 6]. The algorithm of the
time domain decomposition method can be described as follows:

1. Assume the number of time steps N .
2. Consider the positive integers A and B, the meanings of A and B are the number of
division and the number of time steps in the divided section, so that AB=N .

3. Decompose the interval [0; tf] in A subinterval of length B
t.
4. Solve the state equation and store the solution for n= iB and i=0; 1; : : : ; A − 1, and
then for n=(A− 1)B+ j and j=1; 2; : : : ; B, which are shown in Figure 2.

5. Solve the adjoint equation for n=N;N − 1; : : : ; N − B + 1 using the solution of state
equation for n=N −B+1; N −B+2; : : : ; N and compute the gradient of performance
function.

6. Solve the state equation and store the solution for n=(A− 2)B+ 1; (A− 2)B+ 2; : : : ;
(A− 1)B− 1.

7. Solve the adjoint equation for n=(A − 1)B − 1; (A − 1)B − 2; : : : ; (A − 2)B + 1 using
the solution of the state equation for n=(A− 2)B+ 1; (A− 2)B+ 2; : : : ; (A− 1)B − 1
and compute the gradient of performance function.

8. Set A=A− 1 and go to step 6.

The number of storage requirements is A+B. Thus, to minimize the storage, A+B should
be minimized. If N 1=2 is an integer, the minimum is attained for A=B=N 1=2. Therefore the

t

0 B∆t 2B∆t 3B∆t 4B∆t N∆t (tf)

Figure 2. Subdivision of [0; tf]; A=5; B=5; N =25.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:319–338
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storage requirements is 2N 1=2 instead of N . For the large scale optimization problem, this
method is e�cient for the computation.

5. MINIMIZATION TECHNIQUE

5.1. Sakawa–Shindo method

The Sakawa–Shindo method is applied for the minimization technique [7]. In this method, the
modi�ed performance function to which a penalty term is added is introduced. The modi�ed
performance function is written as

K = J ∗(l) +
1
2
( ��(l+1) − ��(l))TW (l)( ��(l+1) − ��(l)) (37)

where l is the iteration number for the minimization, �� is the angle of rotation and W (l) is the
weighting parameter. The angle of rotation expresses the locational direction of the bank to
prevent the dispersion of pollutant. Applying the stationary condition, �K =0, the following
equation can be obtained. The angle of rotation of the bank is renewed by the following
equation:

W (l) ��(l+1) =W (l) ��(l) +
∫ tf

t0

∫
!

@H

@ ��
d! dt (38)

where ! means the domain of rotation and the gradient of the Hamiltonian with respect to
the angle of rotation is expressed as

@H

@ ��
= u∗Ti

(
− �uj @Sj

@ ��
ui − g @Si

@ ��
�− �

(
@Hjj
@ ��
uj +

@Hji
@ ��
uj

)
− f @M

@ ��
ui

)

+�∗T
(
− �ui @Si

@ ��
h− �ui

@Si
@ ��
�− (h+ �)@Si

@ ��
ui

)

+ c∗T
(
− �ui @Si

@ ��
c − � @Hii

@ ��
c
)

(39)

The algorithm of the Sakawa–Shindo method is shown as follows:

1. Choose an initial control value ��(l).
2. Compute u(l)i ; �

(l) and c(l) by the state equation and the initial performance function
J (l).

3. Compute u∗(l)i ; �∗(l) and c∗(l) by the adjoint equation.
4. General a new angle of rotation ��(l+1).
5. Check for convergence; if ‖ ��(l+1) − ��(l)‖¡ �, then stop, else go to step 6.
6. Compute u(l+1)i ; �(l+1) and c(l+1) by the state equation and the performance function
J (l+1).

7. Renew a weighting parameter W (l); if J (l+1)6J (l), then set W (l+1) =0:9W (l) and go
to step 3.
else set W (l+1) =2:0W (l) and go to step 4.
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6. SHEAR-SLIP MESH UPDATE METHOD

For the rotational problem of the body, the shear-slip mesh update method is usefully adapt-
able [8]. In the case that the body is rotated, remeshing is required. As one of the remeshing
techniques, this method is useful. The details of the shear-slip mesh update method are illus-
trated in Figure 3. The whole domain is divided into three regions which are the domain of
rotation, the connection domain and the �xed domain. When the body is rotated, the mesh
data are deformed in the connection domain. This method is based on the fact that if the mesh
data are deformed, the only mesh data in the connection domain are updated. Figure 4 shows
the way to update the mesh data. This method is very e�cient for the problem of rotational
body. In this research, this method is used to renew the angle of rotation of the bank.

Figure 3. Shear-slip mesh update method: (a) before application; (b) after application.

Figure 4. Renewal of mesh data: (a) before application; (b) after application.
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7. CASE STUDIES

7.1. Validation using rectangular channel

The rectangular channel is employed to validate the method presented in this paper. The
purpose of this research is to investigate the e�ect of the location of the bank and to obtain
the optimal angle of rotation of the bank using the optimal control theory. The �nite element
mesh and the computational condition are illustrated in Figures 5 and 6, respectively. The
Kalman constant �l is 0.41, the Manning coe�cient of roughness is 0:001 (sec=m1=3) and the
di�usion coe�cient � is 0:5 (m2=s). Total number of nodes and elements are 1121 and 2094,
respectively. The pollutant concentration, 10 (ppm) is made to �ow from the central point on
the left side boundary of the rectangular channel. Time increment 
t is 0.05 (s), the number

Figure 5. Finite element mesh.

Figure 6. Computational condition.
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330 T. KURAHASHI AND M. KAWAHARA

8
10
12
14
16
18
20
22
24
26
28

0 1 2 3 4 5 6
P

er
fo

rm
an

ce
 F

un
ct

io
n

Iteration Count

performance function

Figure 7. Variation of performance function.
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Figure 8. Time history of pollutant concentration at the objective point.
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Figure 9. Variation of angle of rotation.

of time steps is 1000, the number of divisions A is set as 25, the number of time steps B in
the divided section is set as 40. The weighting constant Q at the objective point is 1.00 and
at other points is 0.00.
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Figure 10. Comparison of the location of the bank.

Table I. Reduction of computational storage requirements.

EXE size

Conventional method 208.9 (MB)
TDDM 126.0 (MB)

Figures 7 and 8 show the variation of the performance function and the time history of
pollutant concentration at the objective point. The performance function decreased monotoni-
cally and converged. In the �nal solution, it is natural that the barrier is perpendicular to the
line from the source to the objective points. This means, the validation of the present method
has been con�rmed. The fact that the pollutant concentration is reduced can be con�rmed.
But it is also found that there exists a residual pollutant. Therefore, whether the pollution can
be reduced or not depends on the di�usion coe�cient. Figures 9 and 10 show the variation
of the angle of rotation and a comparison of the location of the bank. The computed angle
of rotation is 88.35 degrees.
Table I shows that the computational storage requirements are reduced from 208.9 (MB)

to 126.0 (MB) by using the time domain decomposition method. The computational storage
requirements could be further reduced to 39.7%.
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7.2. Onjuku coast

Onjuku coast located in Chiba prefecture in Japan is analysed for practical computation. The
coast is polluted by the e�uents �owing into it from the Shimizu river. The location of
Onjuku coast is shown in Figure 11. The pollution is accumulated in the coast o� from the
Iwawada port. Therefore, it is reported that the ear shells could not be caught as before.
The �shing point is o� the coast of the Iwawada port, which is indicated in Figure 13.

Figure 11. Location of Onjuku coast.

Figure 12. Finite element mesh.
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Figure 13. Computational condition.

650
700
750
800
850
900
950

1000
1050
1100
1150

0 2 4 6 8 10 12

P
er

fo
rm

an
ce

 F
un

ct
io

n

Iteration Count

performance function
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Figure 15. Time history of pollutant concentration at the objective point.
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Figure 16. Variation of angle of rotation.

Figure 17. Non-control case and optimal control case for pollutant concentration each 3 h. (a)
Non-control case (after 3 h); (b) optimal control case (after 3 h); (c) non-control case (after 6 h); (d)
optimal control case (after 6 h); (e) non-control case (after 9 h); (f) optimal control case (after 9 h);

(g) non-control case (after 12 h); and (h) optimal control case (after 12 h).
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Figure 17. (continued).

To settle this problem, the control method of pollution by a bank is suggested. The bank
for controlling the pollution is set between the Shimizu river and the Iwawada port. The
pollutant concentration is accumulated easily in the area o� the coast of the Iwawada port
by the advection e�ect of the local �ow in this area. The purpose of this research is to
investigate the e�ect of this plan and to obtain the optimal angle of rotation of the bank
using the optimal control theory. The �nite element mesh and the computational condition are
illustrated in Figures 11 and 12, respectively. Total number of nodes and elements are 434
and 745, respectively. The pollutant concentration, 5.9 (ppm), is made to �ow from the mouth
of the Shimizu river. From the open boundary, the water velocities and the water elevation
obtained by the Kalman �lter �nite element method are given [9]. The Kalman �lter �nite
element method is one of the estimation methods of tidal �ow using the limited observation
data. Thus, the boundary condition of open boundary is estimated by the observation data,
and the �ow behaviour is analysed by the estimated tidal boundary condition. Time increment

t is 10.0 (s), the number of time steps is 4320, the number of divisions A is set as 60,
the number of time steps B in the divided section is set as 72, the Kalman constant �l is
0.41, the Manning coe�cient of roughness is 0.03 (s=m1=3) and the di�usion coe�cient �
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Figure 17. (continued).

is 10.0 (m2=s). The weighting constant Q at the objective point is 1.00 and at other points
is 0.00.
Figures 13, 14 and 15 show the computational condition, the variation of the performance

function and the time history of the pollutant concentration at the objective point, respectively.
The performance function was monotonically decreased and converged, which means the
pollutant concentration is controlled. But, in this computation, it is found that the reduction
of pollutant concentration is not satisfactory. Figure 16 shows the variation of the angle of
rotation. The computed angle is 71.14 degrees. It is considered that the computed angle of
the rotation of the bank becomes perpendicular to the connected line between the source
point of pollution and the objective point. Figure 17 shows the distribution of the pollutant
concentration near the Iwawada port in both the non-control and the controlled cases. In
the controlled case, the reduction of pollutant concentration can be con�rmed. The pollutant
concentration at the objective point could be reduced 18.5% at the terminal time.
Table II shows that the computational storage requirements are reduced from 431.6 (MB)

to 112.8 (MB) by using the time domain decomposition method. The computational storage
requirements could be further reduced to 73.9%.
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Figure 17. (continued).

Table II. Reduction of computational storage requirements.

EXE size

Conventional method 431.6 (MB)
TDDM 112.8 (MB)

8. CONCLUSION

In this paper, the optimal control theory was presented to decide the optimal angle of rotation
of the bank for controlling the pollutant concentration at the objective point. As the state
equations, the shallow water equation and the advection-di�usion equation are employed.
The Galerkin method with bubble function element and Crank–Nicolson method are used
for spatial discretization and temporal discretization. As a computational storage requirements
reduction technique, the time domain decomposition method is applied to the optimal control
problem. The computational storage requirements could be drastically reduced. Especially, for
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the long time and large scale optimization problem, it is considered that this method is shown
to be very e�cient. The Sakawa–Shindo method is applied to the minimization technique.
The shear-slip mesh update method is used for the rotation of the bank.
The optimal angle of rotation of the bank could be obtained using the optimal control

theory. It is considered that the obtained location of the bank is suitable for the prevention
of di�usion of pollutant concentration. The reduction of pollutant concentration by the bank
could be con�rmed. For future works, it is necessary to apply the multi-objective points and
multi-bank problems. Moreover, it is necessary to decide the appropriate terminal time.
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